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Abstract

In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles
immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the
dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms.
We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall
behavior of the schemes.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in the numerical simulation of models describing the time evolution of particle suspen-
sions in flows. The fluid/particle mixture is described as a two-phase flow where we adopt a statistical view-
point for the disperse phase (the particles), whereas we use the standard description from continuum
mechanics for the dense phase (the fluid). Therefore, the basic models couple fluid with kinetic equations
where the mean velocity is driven by the fluid velocity. This kind of fluid—particle interaction models has appli-
cations in several fields as the description of diesel engines [42,41,17,1], rocket propulsors [36], pollution
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settling processes [6,40], rain formation [18], chemical engineering, wastewater treatment [5] or biomedical
flows [4].
Specifically, this work is devoted to the following system of partial differential equations, devised in [7]:

8f +BE-Vuf —1Vi0-Vef =1V ((6=u)s + Vi),
on + div,(nu) = 0, (1)
0,(nu) + Div,(nu @ u) + V.p(n) +nnV@ = ; 22(J — pu),

where we use the notation

ple) = [ e ods Jex)=p [ eren e

The disperse phase is described by its particle distribution function in the phase space f(¢,x, &) = 0. The par-
ticles interact with a dense phase, described by its density n(¢,x), and its velocity field u(z,x). As far as we are
concerned with the description of modeling issues, we consider the three-dimension case: ¢ > 0, x € R3,
¢ € R?; whereas numerical simulations will be performed in the one-dimension framework. Both phases are
subject to friction forces exerted by the other phase, proportional to the relative velocity u(¢,x) — &, and also
to external forces embodied into the potential @. We will be particularly interested in the case of gravity and
buoyancy forces. Particles are also subject to a Brownian motion, that leads to a diffusion term with respect to
the velocity variable, according to Einstein [16]. Here the system is written in a dimensionless form that makes
the physical parameters 5, €, n and 5 appear. By convention, all the parameters are positive but #’ which can
be either positive or negative: indeed, this indicates that the external forces might act differently on both
phases, not only by strength but possibly also with opposite directions; this will be detailed below. We wish
to design numerical schemes specifically dedicated to treat asymptotic regimes, in particular the limit e — 0.
For further purposes, it is convenient to introduce the shifted Fokker—Planck operator: for a given u € R*, we
set

—lé-ul*/2
L(f) = Ve (€= w)f +Vef) = Ve (MV:(/M,), M, (&) = W
and we will denote L := Ly, M := M. Accordingly, the penalized right hand side in the kinetic equation for the
disperse phase in (1) reads 1L, s(f) and we can expect for small €’s a relaxation to the Maxwellian
Moy (&)

More details on the physical background can be found in [42] in connection to combustion phenomena. We
mention the derivation of similar coupled models for disperse and dense phases in [27,28,20]. The question of
“turbulence effects” on the disperse phase is addressed in [15,24]. Note that here we neglect collisional effects
and size variations that could be important for some applications, see e.g. [3]. The analysis of a coupled model
involving the incompressible Navier—Stokes system instead of the Euler equations is performed in [26]. Con-
sidering such a coupling, asymptotic problems were dealt with in [10,25,21,22]. A rigorous existence result for
a coupling involving the compressible Navier—Stokes equations (which means that the dissipative term uAu is
added in the fluid equation in (1)) is established in [37] while the analysis of its asymptotic limit is performed in
[38]. The local well-posedness of smooth solutions for the system (1) was investigated in [2] while asymptotic
problems and stability properties are studied in [7].

Here, we wish to investigate numerically the system (1) and the asymptotic regimes by proposing suitable
asymptotic preserving schemes, in the sense introduced by Jin [29] (see the comments in Section 3). To this
end, we shall use a fully explicit scheme, in the spirit of methods introduced for gas dynamics [33,32], neutron
transport [30,31] or used in radiative transfer theory [23] and which were discussed recently in [8]. Splitting
techniques for the kinetic part will be the basis to separate stiff parts from convection parts making some
potentially troublesome terms with large velocities of order one. The flow part will be solved by state-of-
the-art Lagrangian-projection schemes with anti-diffusive properties developed in [35,12-14,34,11].

Moreover, we numerically investigate two different asymptotic regimes in one of the most important cases
of application in which particles (pollutants) inside the flow (air) are under the action of gravity and buoyancy
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in one-dimension as considered e.g. in [5,40]. We will show the qualitative differences between the bubbling
and the flowing regimes and the stability of sedimentation/buoyancy profiles in the bubbling regime as theo-
retically investigated in [7]. Furthermore, the chosen test cases will demonstrate the ability of the proposed
numerical schemes to deal with strong shock situations, almost vacuum regions and concentrations of density.

The paper is organized as follows: in Section 2, we go back to the modeling issues, explaining the meaning
of the dimensionless parameters and introducing the asymptotic problems we are interested in. In Section 3,
we introduce the numerical scheme, detailing the steps of the splitting approach. Finally, we discuss our
numerical results in Section 4.

2. Overview on modelling and asymptotic issues
2.1. Dimensionless parameters

System (1) is written in a dimensionless form; it involves the following parameters that are related to phys-
ical quantities (we refer to Carrillo and Goudon [7] for a detailed discussion on the scaling):

e ¢ is the ratio of the Stokes settling time 2"9"“ over the time scale of observation, a and p; being the radius of
the (supposedly spherically shaped) parucles and their density, respectively, and u being the dynamic vis-
cosity of the fluid. This parameter, referred to as the Stokes number, measures the strength of the friction
force.

e pp/pg is the ratio of the density of particles over the typical density of the surrounding gas.

e [ is the ratio of the thermal velocity of the particles, which measures the fluctuation of particles velocities,
over the typical velocity of the fluid.

e i’ is, up to its sign, ¢! times the ratio of the Stokes velocity, that enters into the scaling of the external
forces, over the thermal velocity.

e 17/ describes how different the influence of the external forces is on the different phases; it is a dimension-
less coefficient with a sign.

Gravity driven flows. It is worth illustrating this discussion with the example of gravity and buoyancy forces
where the external potential is equal to gz, g being the gravitational acceleration and z the height direction. Then,
the Stokes velocity is defined as Vg = 2”"“ g|1 — pg/ppl; it corresponds to the asymptotic velocity of a single
particle with radius a and density pp dropped in a viscous fluid at rest having dynamic viscosity u. Accord-
ingly, introducing time and length units, 7 and L, respectively, we get

r_ g(1 — pg/pp)T
VkOmp
where mp = %ncﬁ Pp, O is the temperature, k the Boltzmann constant. The sign of this parameter depends on

the ratio py/pp which accounts for the relative strength of the buoyancy and gravity forces. As said above, it
can be rewritten as

) =t
= VkO[mp'

Concerning the action of gravity on the fluid, we obtain the following expression for the dimensionless
coefficient

;7277

where U = L/T measures the typical velocity of the fluid.

Therefore, in this context, 1/,/7 is the Froude number Fr of the flow, whereas 1/4/|n'| is the (reduced)
Froude number Fip of the disperse phase. We will be interested in the respective Richardson numbers,
Ri = 1/F?, of both phases. They characterize the effect of gravity over buoyancy, particularly used in aero-
nautics engineering, where it is considered as a rough measure of air turbulence. Thus, Rir =# and
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Rip = || and, being this number less/greater than unity means that the corresponding phase is gravity-driven/
buoyancy dominated, respectively. Anyway, note that the previous definitions lead to
" 1
=(1 _pF/pP)E'

Density-dependent viscosity. From the modeling point of view, it may seem strange that the action of the
friction forces is not negligible in regions where the density of the fluid is negligible. However, a usual assump-
tion in compressible gases is to assume that the viscosity is temperature dependent. Even in pollution model-
ing, the air-viscosity is temperature dependent [40] and some models have been proposed like u = CoT?/?, see
[19]. In our chosen isentropic p-system, the equation of state is n = (R T)l/ 0=V where R is the perfect gas con-
stant and 7 is the temperature. We might assume that the viscosity is density-dependent as u = n® for a fixed
o > 0, and thus the dimensionless system reads as

8f + e Vuf —1Vi0-Vef =2V ((e~fu)f + Vef),

on + div,(nu) = 0, (2)
0,(nu) + Div,(nu @ u) + V,p(n) + nnV,® =1 22 p*(J — pu),

€ pp

where the dimensionless parameter ¢ is redefined accordingly. Other models assume from the beginning that
the friction force depends on the fluid density, see for instance in [36] where the friction coefficient depends
linearly on n.

Remark 1. Dealing with friction forces depending on the viscosity, but neglecting viscosity effects in the fluid
equation might seem awkward from the modeling point of view. This is however often used in applications,
especially in connection to combustion problems, and it leads to more challenging questions for numerics.
Note that the Stokes number is related to the Reynolds number by e = 2 (pp/ pr)(a/L)*Re and a < L.

2.2. Dissipation properties and asymptotic regimes
We wish to investigate numerically (1), at least considering some asymptotic regimes. The starting point of
the asymptotic analysis relies on the following dissipation property.

Proposition 1 (Entropy dissipation property). We suppose that

Z—Eﬁzﬂ, W =cp, with ¢ = +£1. 3)

Let us define the free energies associated, respectively, to the particles and to the fluid as follows:
= Jp Jp (fln +§f+g<15f)d§dx,
= Joo (4 () + nom) d,

where I1 : Rt — R" is defined by sI"(s) = p'(s). Then, we have:

L ForFt //\5 BT + 29/ déds < 4)

This statement is also valid under no-flux boundary conditions for the flow phase and reflection boundary
conditions on the disperse phase for the kinetic distribution, see [7] for details. Assuming a power pressure law
p(n) =n’, we have II(n) =n’/(y — 1) for y > 1 and II(n) = nln(n) — n for y = 1. This claim helps in under-
standing the asymptotic regime € < 1: we infer that f has essentially a hydrodynamic behavior

F(t,x,8) = plt,x) 2m) ™ exp(=[¢ = B~ u(t,x)[*/2) = p(t,x) Moy (E)-

Of course the evolution of the macroscopic density p remains to be discussed and highly depends on the other
scaling assumptions. To be more specific, in [7], the following regimes are distinguished:
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The bubbling regime. We set

1 , 1
Coming back to the physical quantities, it means that
Stokes velocity ~ typical velocity of the fluid <« thermal velocity.

According to (3), we also have:
Pe _
Pr

and we suppose that #, which might depend on ¢, tends to a positive constant 7.
The flowing regime. We assume that:

)

ﬁz % =1, p=|y|a fixed positive constant
F

not depending on ¢, as well as # > 0. Coming back to the physical quantities, this scaling assumption means
Stokes velocity < typical velocity of the fluid ~ thermal velocity,
while the ratio pp/py is of order 2.
Remark 2 (The gravity driven case). The scaling assumption (3) can be recast as
I
C-A

with ¢ = sgn(1l — ﬂz). Consequently, we have:

Ri]: =n and Rlp = |11l‘ = ﬁ,

1. In the bubbling regime: As ¢ — 0, we have pp/pr < 1, Rip — 1 and Rip > 1; thus, the disperse phase is
buoyancy driven while the flow is gravity driven. Here ' < 0 and the external forces act in opposite directions
on the particles and on the fluid, and we might expect the formation of sedimentation profiles at opposite ends.

2. In the flowing regime: We point out that § = \/pg/pp can take any fixed value independent of ¢ — 0. Note
f = 1 means we are dealing with a single phase flow. Having f close to 1 means that the effect of the exter-
nal force on the disperse phase is very low. Taking into account the values of the Richardson numbers, we
expect the following: when f is larger than 1, the forces act in opposite directions on both phases whereas
when f becomes smaller than 1, the two phases are driven by gravity, but with more influence on the fluid.

For instance considering the application to rocket propulsors, we have pp/pp ~ 5.10%, see [36]; for fuel
sprays a typical value is pp/pp =~ 34, see [17], or for industrial thickening pp/pp ~ 2.5, see [6].

2.3. Derivation of the limit equations

Let us derive formally the limit equations corresponding to the asymptotic regimes ¢ — 0 described above.
From now on, according to (3), we use (1) where we set ' = ¢f, ¢ = sgn(’) (which is —1 in the bubbling

regime) and pp/pr = 1/

2.3.1. Bubbling regime
The bubbling regime can be readily understood by inserting the following Hilbert expansion

/. :f(0)+\/gf(1)_|_€f(2)+... (5)

into (1) and identifying terms arising with similar power of \/e. We get

e ¢! terms: Lf®) = 0 which implies that £ (z,x, &) = p(t,x)M(&).
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o 2 terms: LY = &V fO 4 (u+ V. @)V f O = EM(E)(Vep — (u+ V. ®)p), where we used the fact that
¢ = sgn(n’) = —1 in this regime. This equation can be readlly 1nverted remarking that L(EM (&) = —EM(E);
we obtain

fOx,8) = —EM(E)(Vep — (u+ Vi ®)p).

o & terms: Lf? =9,/ + &V, /W + (u+ V,®) - Vof V). However, [hdé = 0 appears as a necessary condi-
tion for the equation L(f) = & to admit a solution. We are thus led to

3, ( / A dé) + div, ( / et dcf) =3p— V. (Vop— (u+ V,®)p) = 0.
R3 R3

This so-called Smoluchowski equation is coupled to the Euler system whose right hand side is

/R} <\/%u>fd5:/W C’f“)df*”/[r@f(o)df:—(pr—pvxqs).

We end up with the system
0,0 + dive(p(u+ V@) — V,p) =0,
on + div,(nu) = 0, (6)
0;(nu) 4+ Divy(nu @ u) + Vi (p(n) + p) + (hxn — p)V, @ =0,

that was derived in [7] based on the moment system.

Remark 3. In the numerical simulations, we will complete the kinetic equation by the specular reflection
boundary condition

f(t,x, &) = f(t,x, & —2(E-v(x))v(x)) for any (x, &) € 0Q x RY, such that ¢ - v(x) < 0,

where v(x) stands for the outer normal vector at the point x € 0Q. Obviously, this boundary condition guar-
antees mass conservation. Looking at the asymptotic problem, the leading term (% clearly satisfies the reflec-
tion boundary condition and we obtain relevant information by considering the corrector f(!). Imposing the
reflection law leads to the following Robin condition

(Vip— (u+V,®)p)-v(x) =0 on 0Q, (7)

which completes (6) and also preserves mass for the limit system.

2.3.2. Flowing regime
Proceeding similarly for the flowing regime, we get

o ¢! terms: L,/5(f*) = 0 and we infer that /O (z,x,&) = p(t,x) My,5(¢).
o & terms: L,(fV) =0, + ¢V fO —cV,.@-V:f© and integration with respect to ¢ yields the mass
conservation

0,p+ V., (pu) =0.

To describe the coupling, we remark that

% (/ gfd5>+Dwx</ é®£fdf)+ VX¢A3fdfé%A3(ﬁfu)fdf

—(0;(nu) + Divy(nu @ u) + Vyp(n) + nnV,P). (8)
Therefore, at the leading order we obtain

0/((n+ B~>p)u) + Divi((n + B> p)u @ u) + Vi(p(n) + p) + (nn + cp)V.® = 0, 9)
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whereas p and n are both advected by the velocity u:
Op+V, (pu)=0=0n+V, - (nu). (10)
3. Asymptotic preserving numerical methods
3.1. Bubbling regime

Our numerical strategy is based on the Hilbert expansion method which allows to guess the asymptotic
behavior of the system (1). It suggests that

ﬂ(t,x,é) :pe<tvx)M<é)+\/ng(taxa é) (11)
where the remainder r, is expected to remain bounded (see Proposition 1). Furthermore, f;,r. satisfy
1 1
Of. + & -V + (u( + VI@) -Vere = gLﬂ + 7€M(5)S6(1,x, f), (12)
where

Sc(t,x,8) ==& Vip, — & (ut,x) + V. ®)p,,
and the evolution of the remainder obeys

1 1 1
= Lr.+-MS, — —
;7. . re + . S, N

To derive the numerical scheme, we use a splitting algorithm to compute the evolution of both the density f;
and its fluctuations . by using relations (12) and (13) where we get rid in the right hand side of the lower order
terms. This leads to the following scheme:

Given n¥, u*, f* r*, approximation of n,u, f,r at time kAt

6'er€+(u5+vx‘p)V5r€—MVx' (/ £*r5d6*>:|' (13)
R3

e Step 0: Solve the Euler equations for the fluid density » and velocity u. We treat the source term explicitly
so it reads

/éﬂ‘dé—u"/f"dé.
R3 R3

We use a numerical method which preserves with accuracy the shock structure of the hyperbolic system,
applying directly the scheme designed in [35,12-14,34,11]. This defines #**! and u**!.

Actually, since the limit equation for the density of particles is of parabolic type, it has a different typical time
scale than those of the Euler equation; in turn, the equations involve different stability conditions. Hence, we
perform Step 0 on a time interval (kA#, (k 4+ 1)At,), and then we make several sub-cycles (Step 1-Step 2)
below on time intervals (kK'Az,, (k' + 1)At,), for some Az, < At (typically, the space mesh size Ax being given,
we have Az, = O(Ax?) but Az, = O(Ax)).

e Step 1: Solve the stiff equations

1 1 1
of =-Lf, Or=-Lr+-MS,
€ € €

where
S = _‘f . pr + 5 . (uk+1 + Vr(p)pv

getting rid of terms of order O(1/+/€) in (12) and (13), we will discuss these terms below. The crucial point is

that p = [ fd¢ is not modified by the first equation: p**1/2 = [ f¥+1/2d¢ = p* so that the source term in the

second equation can be treated as constant in time. Accordingly, we get
{ fk’+1 /2 _ ghiL/e fk’

rk/+1/2 — eAtL/erk/ + (1 _ eAtL/E>MSk’. (14)
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e Step 2. Solve the transport-like part
Of +&- Vo + W +V.0) - Ver=0, 8r=0
(note that the convection term is of characteristic speed ¢ and not &¢/,/e) which defines f**! and

k’+1 — ffk’+1 dé.

This kind of asymptotic-induced schemes have been introduced by Klar [33,32], and, in a different version
by Jin—Pareschi-Toscani [30,31], and revisited in [8,23]. The situation looks more complicated here since it
involves the operator €. This is what we detail now. We keep a fully explicit approach, using the fact that
solutions of

1
OF =-LF +H
€

can be explicitly computed, see for instance [9], with a formula involving the fundamental solution

o 2
G(1,E,Ey) = : exp (— M) 5y = e

(2n(1 = 5(2)"))"" 2(1 - 3(1)%)

associated to the Fokker-Planck operator in dimension N. Hence, given a data F(s, &), and a source term
H(o, &), we get the Duhamel formula

F(t,&) =" VF(s,8) + / et *H(q, &) do

:/RV (70 e Fis cades + // 7, & 60 ) H(0,E4)dE o

These expressions involve the quantity e/ with 0 < € < 1, which motivates the use of the following expan-
sion for 0 < d <« 1

| &= 8&/ . c e >
D; . exp <— 2(1_52)>F(f*)d€* =M(<) (/RNF(C:*)dC* +0¢ /RN f*F(f*)df*> + O(5%).

with Dy = (2n(1 —6*)™?. We use this expansion to approximate the Duhamel formula for
H(t,x, &) =M (&)S((K' + 1)At,x, &), which is not modified during the time step. Accordingly, we make the fol-
lowing identity appear

G /
- / e(sz(k +1)Ar)/e do=1-— efAt/e.
K At
We are finally led to the following approximation for (14)
fAJH/z(é) =M(&) (Pk, + e Mg fR.% Enf® df*)a
rk/+1/2(6) — e—At/eM(é) (f fRB f*rk/dé*) + (1 _ efAt/e)M(é)Skf.
To obtain the second equation we used the fact that [, 7' (£)d¢ = 0, and we keep in mind that p* /2 = p¥.

(15)

Remark 4. The terms of order O(1/+/€) in (12) and (13) can be disregarded due to this expansion. In fact, if we
have kept them, we would have additional terms in the scheme of order O(y/€). For instance, in the equation
for f¥+12(¢), we should have an additional term coming from the approximation setting
H(t,x, &) = ﬁM(f)S((k’ + 1)At,x, &) which now leads to the additional term

Ve(l —e MM (E)s”.

Analogously, it happens with the additional term in the fluctuations. In fact, setting

H(t,x, &) = —% &-Vore+ (ue + Vi @)Ver, — MV, - </R3 é*ndf*)],
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since its integral over ¢ is zero, we obtain the additional term

1 (K+1)At

- . (o—(K'+1)At) /e . ~ . . !
M e [ e virgacdo = VM@ [ aE Vit )a

K At

that is disregarded.

Full discretization and mass conservation: The space and velocity discretizations deserve some comments
since some care is needed to preserve the mass conservation observed at the continuous level. For the sake
of clarity, we restrict the discussion to the one-dimension framework (which will be used for the simulations
presented in the last Section). According to the approach in [23,8], we choose an upwind discretization for £0,r
in Step 2 and a downwind discretization for £0,p in Step 1, so that we recover a centered scheme for the dif-
fusion term in the limit ¢ — 0. For the discretization of (u*™! + 8,®)d:r in Step 2, we choose a centered dis-
cretization, in order to ensure the conservation of the total mass. To this end, we also prescribe for the
convection Step 2 specular reflections for the fluxes associated to the convection in space, see [8] for similar
conditions. To be more specific, we choose a symmetric space of 2M discrete velocities {&i, ..., &y} ranging
from —&y to Evax and we integrate through trapezoidal rule to ensure that the even moments of the odd
functions in ¢ vanish. Then, we write our fully discrete approximation of the x-derivative of r as

g' m g'— m
[éaxr]j,m = s/ Ax 2 ’

Density of the dense phase at time 2 Velocity of the dense phase at time 2 Density of the dense phase at time 2 Velocity of the dense phase at time 2
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Fig. 1. Bubbling regime: simulation with e =0, y = 1.4, F = 1 at time 7 = 2. Comparison of the densities and velocities of particles, and
of the dense phase for several p,. For this run &y, = 10, A = 0.2, Ax = 0.04.
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with j € {1,...,J} the discrete space index and m € {1,...,2M} the discrete velocity index, where due to the
choice of upwinding, we have

~ gmrj,m lf ém > Oa
&j+1/2m =

wlisim 1 &, <O.

For the boundary terms, we impose
&32m = —&3/2,—m if &, >0,
{gJI/Lm =g/ ip-m if &, <O,

where J — 1 is the number of intervals in the space variable labelled from 1 to J — 1. For f, we choose a spec-
ular boundary condition at the end of Step 2:

{fl,m :f2,—m if ém > 0,

Moreover, at the end of Step 1, we impose a boundary condition on the fluctuations coherent with specular
reflection for f. The specular reflection for fimplies, due to the expansion f = pM (&) + +/er, specular reflection
for r, or in other words, r must be an even function of &. Since at the end of Step 1 the fluctuation r is an odd
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Fig. 2. Bubbling regime: simulation with e =0, p, = 0.5, F =1 at time 7 = 20. Comparison of the densities and velocities of particles,
and of the dense phase for several y. For this run &y, = 10, A = 0.2, Ax = 0.04.
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function of &, then r must vanish at the boundary. Thus » = 0 is imposed at the boundaries 2 and J — 1 imply-
ing finally, that g3/, = &,-1/2» = 0 for all m. We also note that this numerical boundary condition exactly
coincides when € = 0 with the discrete version of the Robin boundary condition (7) as in [§].

Asymptotic preserving: It is worth writing what the scheme does for e = 0. Formulae (15) become

fle/z(f) _ M(f) f[RP Urk’+1/2 _ At(é* V. + (uk“ + Vx‘p) . V;)rk/ﬂ/z]df*,
PHR(E) = M()SY = M(E)[—¢ - Vop! + &+ (1! + V. @)p"]

which coincide with the Hilbert expansion (11) and we recover the Smoluchowski equation, as expected. This
means that the scheme is Asymptotic Preserving. Let us point out again that the derivation of the scheme is
induced by the asymptotic regime: the method precisely aims at being relevant for small values of ¢, when the
presence of stiff terms make it definitely non affordable a direct computation of the original equation. We refer
to [8] for such a discussion and examples. In particular, we checked that the scheme is consistent with the limit
system when € = 0, and a further consistency analysis can be performed under the condition that ¢ tends to
zero faster than At, in the spirit of [29]. Anyway, the approximation are intended to make the scheme valuable
for a range of moderate positive values of e.

Well balanced property: The equilibrium states for the kinetic equation read, up to a normalization factor,
e?®e=<"/2, Of course, Step 1 does not modify such a distribution since it belongs to the kernel of the operator
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Fig. 3. Bubbling regime: evolution of the free energy (e = 0). For this run &y, = 10, A = 0.2, Ax = 0.04.
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L. We rewrite 0,90;:f = %(«:a ®)0;: f which leads to the numerical approximation (upwind in space, centered in

velocity)
1 ém fj,m+1 _f_}‘.,mfl .
é Ax(¢ Q/—l) 2Af if ém>0’
1 é ﬁ,n1+1 _f}ﬁymfl .
é Ax( 1 45]) 2Af if ém <0.

Applying the discrete operator approaching £0, + 0,90; to the equilibrium state and using a Taylor expan-
sion leads to an expression involving only odd powers of &, (and thus a O(A&?) consistency error); in turn,
using the symmetry of the set of discrete velocities, its average vanishes. This motivates the choice of a centered
discretization for computing the derivative with respect to &. Similar considerations hold when we change the
sign of the force term in the kinetic equation.

3.2. Flowing regime
We need another numerical strategy to deal with the flowing regime. It is much more delicate due to the

presence of a stiff term in the Euler equation; furthermore, the limit system (9) and (10) is hyperbolic and does
not involve any diffusive regularizing term. The scheme is based on the expansion
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f(t’x7 5) = p(tvx)Mu(f-,x)/ﬁ(é) + Er(tvxv 6)

Note that this ansatz imposes that the size of the (rescaled) velocity u/f does not grow too much, so that it
always remains well inside the (finite!) velocity grid, e.g for the one-dimension case in a given interval
[—EMaxs +Emax)- Otherwise, one would need to redefine this grid and follow the growth of the fluid velocity,
leading to quite complicated interpolation procedures. The scheme is based on (8) which gives a way to com-
pute the macroscopic friction force so that we get rid of the division by e. The scheme works as follows.

Given (n*,u*, f*), approximating n,u, f at time kA¢,

7941

e Step 0: Solve the Euler equations for the fluid density » and velocity u. Assuming that the density of par-
ticles p remains constant during this time step, we use Després—Lagoutiere’s scheme to solve

omn+ V., - (nu) =0,

0;(nu) 4+ Div,(nu @ u) + Vp(n) + nnV, @ = —

=Div, [¢® {ffdE eV, [ fhde

with reflection conditions for the velocity u. Let us point out that there is no boundary condition for » since the
incoming flux vanishes at both ends. Then we cycle through the following (Step 1-Step 2) to get the time to
#+1. Indeed, Step 0 is governed by a CFL condition based on the size of u which is supposed to remain far
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Fig. 5. Bubbling regime: evolution for e = 0, F = 1. For this run &, = 10, A = 0.2, Ax = 0.04.
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smaller than the largest microscopic velocity involved in the scheme; accordingly the time step imposed by the
CFL associated to the advection terms in the kinetic equation is more constrained. Next, we compute the solu-
tion of the kinetic equation which enters in the definition of the source terms in the Euler system.

e Step 1: Solve the stiff equation

1
G,f = ELukH//jf.

The macroscopic density p = [ fd¢ is not modified during the time step so that p
expansion of the kernel of the Fokker—Planck operator L,, we thus define /¥*+1/2 by

fk’+1/2 _ Muk+l//; [/[R3 fk’(f*)df* Jre—At/e(é _ ukﬂ/ﬁ)/n@ (Ex — uk+1/lg)fk’(§*)df* .

K112 — ok According to the

3
e Step 2: We solve the transport part of the kinetic equation
a,er ﬁ(é * VX - QVX¢ * Vg)f == O

which defines ¥+ and p¥*! = [ f¥+1d¢. As for the bubbling regime, we use a centered approximation to treat
the derivative with respect to &, combined with a upwind approximation for the space derivatives of fand ®.
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Fig. 6. Bubbling regime: evolution for ¢ = 0.1, F = 1. For this run &y, = 10, A = 0.2, Ax = 0.04.
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Actually, due to the time derivative in the right hand side of the fluid system, we start with the kinetic part.
We use a Strang approach: (Step 1-Step 2) is applied on a time step Az/2, then we solve the hydrodynamic part
Step 0 on a full time step Af and go back to the kinetic equation. Again, the scheme is asymptotic preserving:
for e = 0 we get f = pM, /5 and integrating with respect to £ leads to the limit system (9) and (10). Note that, in
the spirit of the kinetic schemes for conservation laws [39], we do not use an evolution equation for the fluc-
tuation, which makes the approach different from the one used for the bubbling regime. By the way, we
emphasize that the schemes are really designed specifically for each asymptotic regime, and it is definitely
hopeless to have in mind the use of one for the other.

4. Numerical experiments

For the numerical experiments, we restrict ourselves to the one-dimension framework (the computational
domain being the slab (0,4)) with a force field, denoted by F, representing gravity and buoyancy effects. As
mentioned in the Introduction, this case is particularly relevant when modeling the dispersion of pollutants
emitted from ground sources [40]; it also applies to the description of thickening processes which are used
in industrial procedures to separate suspensions into their solid and liquid parts [6].
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Fig. 7. Bubbling regime: evolution for e = 0.5, F = 1. For this run &y, = 10, A = 0.2, Ax = 0.04.
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4.1. Bubbling regime
We show various simulations starting with the following data:

e The fluid is initially at rest u(0,x) = 0 with a uniform density »n(0,x) = 1.
e The distribution function describing the particles is a centered Maxwellian with respect to velocity times a
step function in space

&2
V2n'

where 0 < @ < b < 4 and p, is a positive constant.

f(oaxa é) = p*ﬂ[aﬁ] (x)

In Fig. 1, we show the result at time 7 = 2 of the simulation where we make p, vary with values 0.1, 0.5, 1
and 2, respectively. The smaller the concentration of particles, the faster the separation of the phases and the
smoother the profiles of the velocities. At this time the sedimentation profile is clearly visible for p, = 0.1, with
a front on the velocity of the dense phase. This shock coincides with a peak of the density for the particles
which results from the friction force. As p, increases these phenomena are not yet visible, but they will appear

Density of the dense phase at time 0.5 Velocity of the dense phase at time 0.5 Density of the dense phase at time 1 Velocity of the dense phase at time 1
1.6 2.0 .5 0.8
e, (— initial conditiory R — initial condition|
14 I~ alpha=0 15 20k - alpha=0 06
1.2 - alpha=0.6 ) 0 alpha=0.6
101 1.0 0.4
<08 205 202
06 00 00 &
0.4
02 -0.59 -0.2
0.0 4 -1.0. .0 -0.4
0.0 05 1.0 1.5 20 25 3.0 0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 0.0 05 1.0 1.5 2.0 25 3.0 3. 00 05 1.0 1.5 20 25 30 35 4.0
x X X x
Density of the disperse phase at time 0.5 Macroscopic velocity of the disperse phase at time 0.5 Density of the disperse phase at time 1 Macroscopic velocity of the disperse phase at time 1
25 5.0 25
20 4.5 20
15 4.0 15
10 35 10
5 o3.0 5
>0 €25 >0
-5 2.0 -5
-10 15 -10
-15 1.0 -15
-20 0.5 -20
5 0.0 o -25
0.0 05 1.0 1.5 20 25 30 35 4.0 0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 00 05 1.0 1.5 20 25 3.0 35 4.0
X x X
Density of the dense phase at time 2 Velocity of the dense phase at time 2 Density of the dense phase at time 10 Velocity of the dense phase at time 10
1.0
—